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This paper deals with the use of fizzy logic and
dynamic programming in the detection of cardiac
contours in MR Images. The definition of two
parametersfor each pixel allows the construction ofthe
fuzzy set of the cardiac contour points. The first
parameter takes into account the grey level, and the
second the presence ofan edge. A corresponding fuzzy
matrix is derived from the initial image. Finally, a
dynamic programming with graph searching is
perforned on thisfuzzy matrix.
The method has been tested on several MR images and
the results of the contouring were validated by an
expert in the domain. This preliminary work clearly
demonstrates the interest of this method, although a
formal evaluation has to be done.

INTRODUCTION

Cardiac Magnetic Resonance Imaging (MRI) is a
noninvasive imaging technique, that provides high-
resolution images in any chosen plane of the heart.
Extraction of significant parameters such as the
ejection fraction and the wall thickening depends on a
reliable determination of the cardiac contour.
In practice, the processing of cardiac images and the
determination of the outlines are often manual or semi-
automatic. Although manual contour tracing is
accurate, there are several drawbacks: it is tedious,
time-consuming and subjective. Moreover, there are
inter observer variations'. To overcome these
drawbacks, many attempts have been made to
completely automatize the determination of the cardiac
contours2'5. In cardiac cine-MRI, the spontaneous
contrast between the blood pool (bright) and the
myocardium (grey) defines the endocardial contour,
and the spontaneous contrast between the myocardium
and other thoracic structures defines the epicardial
contours (figure 1-c). However, the presence of intra-
cavity structures such as the papillary muscles or a poor
image contrast may render contour definition
ambiguous.

In cardiac cine-MRI, the heart is not an isolated
structure, and so the use of the classical edge detection
operators, such as Canny operator6, or the Marr-
Hildreth operator7, is restricted. Some of the techniques
for cardiac contour detection are based on geometric
information on pixel groups. In particular, the dynamic
contour models8'9 must minimise energy functions. This
method, based on the work of Terzopoulos et al." ,

provides good results, but is not completely automatic.
First, a coarse border is determined. This initialisation
is often made manually. Then the border is deformed
according to energy functions. Another family of
techniques uses the tuzzy set theory in the processing
and interpretation of medical images""3 .The particular
form of the left ventricle allows the use of fuzzy
clustering'4'5. Fuzzy clustering consists of a
classification of pixels into well-defined classes. It is
based on objective function minimisation to generate a
partition of data. An important preprocessing of the
image including thresholding of the grey levels is
needed to achieve data reduction. Graph searching has
already been used in the detection of cardiac
contours25'6 .The aim of graph searching is to
determine the best path between two sets of points.
Each point is characterised by a value (or cost) that
determines its relevance. Usually, this cost results from
the use of a local edge operator.
The main objective of this work is to develop an
automatic method for cardiac boundaries detection
using graph searching. Each pixel cost is a fuzzy
quantity depending on two distinct parameters, and
represents the membership degree to the cardiac
contour.

METHOD

The method we have adopted comprises two parts.
Firstly, two distinct parameters are defined for each
pixel. The first parameter takes into account the pixel
grey level value. Indeed, the pixels located on a cardiac
contour have roughly the same grey level value, called
p. Once the determination of p is done, the grey level
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Fig. 1: Schematic representation of the heart in (a) cartesian coordinate system and in (b) polar
coordinate system. Cardiac MRI in (c) cartesian coordinate system and in (d) polar coordinate system.

value of each image pixel is compared to p. The result
of this comparison constitutes the first parameter. The
second parameter takes into account the presence of
edges. The definition of this parameter depends on the
convolution between an edge operator and the image.
Secondly, the determination of cardiac contours is
based on the use of fuzzy logic and dynamic
programming. Indeed, from the two pixel parameters,
the membership degree to the cardiac contours is
calculated for each pixel. The image is then represented
by a membership degree matrix. Finally, a graph
searching is applied on this matrix in order to detect the
cardiac contours.

GREY LEVEL VALUE OF THE CARDIAC
CONTOURS

To determine the grey level value of the contour pixels,
the user indicates a point near the centre of the cardiac
left ventricle. Then, a series of radial lines is
automatically drawn. Along each line, an edge operator
(1) is used to detect the first edge between a high-
intensity area and a low-intensity area (i.e. contour
between the cardiac cavity and the heart muscle). This
search is limited to the septum, because this edge is
generally well-defined in this area. The operator used is
derived from the Gaussian operator. The Gaussian
operator being a smoothing filter, its definition is
modified to form an edge detection operator as follows:

Vx E ]-oo;0[, f(x)= e

For x = 0, f(x) = 0 (1)

Vx E ]O;+oo[, f(x)= 1 ,ye(2 J

Along each radial line, we locate the pixel where the
convolution provides the highest value, and the grey
level value of this pixel is retrieved on the initial image.

The extracted grey level value p of the endocardial
contour is the maximum of the histogram of these local
grey level values. The determination of the epicardial
contour grey level is similar, except that we search for
the first significant border met from the endocardial
edge, and this search is restricted to the lateral wall of
the heart.

DETECTION OF THE EDGES

We transpose the cardiac image into a polar coordinate
system, taking the centre of the cardiac cavity as the
centre of the initial cartesian coordinate system (figure
1). In practice, this is the point initially indicated by the
user. To detect borders in an image, a gradient operator
is often used. The operator we use is derived from the
Kirsh operator'7. In polar coordinates, cardiac contours
are more or less parallel to the Y-axis (the angle axis)
(figure 1). So, contrary to the Kirsh operator that
privileges all the directions, our operator privileges the
horizontal direction.

DETERMINATION OF THE CARDIAC
CONTOUR POINT FUZZY SET

The possibility distribution associated to each
parameter is graphically represented by a triangular
function (figure 2) associated to a fizzy set. For the
grey level, the closer the value is to the extracted grey
level, the greater the likelihood that the component
belongs to the myocardium (figure 2-a). For the edge
detection, the higher the value is (limited to 255), the
greater the likelihood that the component belongs to an
edge (figure 2-b). So, for each pixel, we determine its
membership degree to each fuzzy set. From the initial
image (figure 3-a) displayed in the polar coordinate
system, the figure 3-b shows a representation of the
membership degree of all the pixels for the grey level
fuzzy set for the detection of the endocardial contour.
The higher the intensity is, the higher will be the
membership degree. Figure 3-c shows a representation
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fA(x) = (x+a-p) / a if p-a < x < p
fA(x) = (b+p-x) / b if p < x < p+b
fA(x) = 0 if not

x (pixel value)

255
(b)

fB(x) = x / 255 if 0 < x < 255
fB(x) = 0 if not

Fig. 2: Definition of the membership functions.
(a) Membership function associated with the
grey level value, where p is the detected grey
level (b) Membership function associated with
the edge.

of the membership degree of all the pixels for the edge
fuzzy set, calculated on the initial image.
We keep the minimum value between the two
calculated membership degrees for each pixel. The new
fuzzy set thus defined, is the fuzzy set of pixels
belonging to the cardiac contour (figure 3-d). Indeed,
this fiuzzy set represents pixels with a grey level close
to the extracted grey level, and located on a border.
A grey value for the epicardial contour has been
determined, and another for the endocardial contour.
The detection of both the epicardial contour and the
endocardial contour is made separately. The first
contour detected is the endocardial one. Afterwards, the
fiuzzy matrix associated with the epicardial contour is
modified. The membership degree of the components
located inside the area defined by the endocardial
contour is set to zero. As the graph depends on this
matrix, the contours cannot overlap one another.

THE GRAPH DESIGN

In the polar coordinate system, the cardiac contours can
be approximated by vertical lines (figure 1). A graph
searching technique is particularly suited to the
detection of straight lines.
The aim of a graph is to detect the best path (also called
optimal path) in a matrix. In image processing, each
component of the matrix corresponds to an image
pixel. In edge detection, the optimal path corresponds
to the researched borders5'6. A graph is defined by a set
of nodes joined together by links. There are two
particular subsets of nodes: the start node, and the goal
node. Each path is a possible solution to the problem.
To detect the best path, we must evoke another
parameter, called cost, and associate it to each node. In
our system, the cost is the membership degree
associated to each pixel. So, we get a cost matrix aQ,
where i is the number of the row, and j the number of
the column. The start node and the goal node are the
same, because we deal with a closed contour. It is easy
to show that the choice of the row of the start nodes
does not modify the final result. The total cost of a path
is the sum of the cost of all the nodes that comprised
the path. The best path is the path with the highest total
cost. Here is the optimal path construction algorithm:

for j=start nodes to the goal nodes
for i=O to the width of the matrix

prec = maxi ( a,lj,l, aj, , a,+l
a,j= aJ, + aprecj-l
link(a,j, aprec,-1)

endfor
endfor
research of the highest value between the goal node.
(i. e. The end of the best path)

maxi(a,b,c) is a function that determines the node with
the highest cost between the nodes a,b and c, and
returns the indice of this node. link(d,e) is a function
that creates a link between the two nodes d and e. The
path is then defined by all the links determined during
the processing and the total cost. Figure 3-e shows an
example of graph searching.
Although there is only one possible path, ambiguities
can be encountered during graph searching. Two
neighbouring nodes on the same row can have the same
membership degree, so the search for the highest value
fails. In that case, we keep the middle node of the three
candidate nodes. The risk of error is therefore
minimised because the two candidate paths are adjacent
to this node. Moreover, we keep the theoretical linear
fonn of the cardiac contour in a polar coordinate
system.
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Fig. 3: Detection of the endocardial border. (a) Initial image transposed in polar coordinates. (b) Membership degrees
associated with the grey level pixel. (c) Membership degrees associated with the edges. (d) Initial fuzzy matrix.
(e) Endocardial contour detected via graph searching

RESULTS

The method has been tested on images acquired by
cardiac cine-MRI. The heart was presented in the
anatomical short-axis plane. About forty images have
been randomly chosen in a patient image database. The
signal to noise and the contrast in the images vary
considerably. A visual evaluation, by an expert in the
domain, of the automatic contour plotting assured us
that the automatic contour plotting was of quality. The
figure 5 shows three examples. In some images, the
difficulties arise from a lack of contrast between the
blood pool and certain portions of the myocardium, and
between the myocardium and the other thoracic
structures, as show the arrows in the figure 5-b. Some
anatomical structures present in the cardiac cavity, in
particular the papillary muscles, are only enclosed in
the endocardial contour detection when they are clearly
seen to be connected to the myocardium, as shown by
the arrow in the figure 5-a. In addition to the success of
the technique in spite of the poor signal to noise ratio,
the figure 5-c shows that our cardiac contour detection
algorithm avoids following false contours (as shown by
the arrow).

DISCUSSION AND CONCLUSION

In this paper, an original method to detect cardiac
contours has been presented. This method is based on
fuizzy sets and dynamic programming. The
fizzification of the parameters allows one to deal with
the uncertainty often encountered in image processing.
Moreover, other parameters, based for example on a
priori knowledge, such as the cardiac anatomy, can be

easily included. Indeed, once the fuzzification is done,
intersection (or union) of parameters can be easily
made. Moreover, the graph searching is a reliable
technique to detect outlines. In particular, the graph
deals with local and global information, and therefore,
it is robust against local noise.
In cardiac cine-MRI, the cardiac contours are not
always well-defined, 'due principally to the lack of
contrast between'the different structures. By testing the
method on several images, it appears that the method is
particularly robust.
A cardiac cine-MRI study allows one to obtain a series
of images of the cardiac cycle for a given location. The
next step is the automatic processing of a series of
images using thi same technique. The indication of the
left ventricle centre is only needed for the first image.
This central point does not move significanty from one
image to anothe. Moreover, the information obtained
on the processed image is used for the processing of the
following image.
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